Adaptive differentiation in floral traits in the presence of high gene flow in scarlet gilia (Ipomopsis aggregata).
نویسندگان
چکیده
Plant-pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator-mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST ) for nuclear and chloroplast microsatellite loci and used a half-sib design to calculate quantitative trait divergence (QST ) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST . We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non-neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.
منابع مشابه
Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata).
Immense floral trait variation has likely arisen as an adaptation to attract pollinators. Different pollinator syndromes-suites of floral traits that attract specific pollinator functional groups-are repeatedly observed across closely related taxa or divergent populations. The observation of these trait syndromes suggests that pollinators use floral cues to signal the underlying nectar reward, ...
متن کاملEstimates of gene flow among populations, geographic races, and species in the Ipomopsis aggregata complex.
Interpopulational gene flow within a species can reduce population differentiation due to genetic drift, whereas genetic exchange among taxa can impede speciation. We used allozyme data to estimate gene flow within and among geographic races and species of perennial herbs in the Ipomopsis aggregata complex (Polemoniaceae). Estimates of interpopulational gene flow within taxa from two methods (F...
متن کاملThe evolution of compensation to herbivory in scarlet gilia, Ipomopsis aggregata: herbivore-imposed natural selection and the quantitative genetics of tolerance.
Tolerance is the ability of plants to maintain fitness after experiencing herbivore damage. We investigated scarlet gilia tolerance to browsing in the framework of phenotypic plasticity using both an operational and candidate trait approach. Individuals from full-sib families were split into an artificial clipping treatment, a natural-damage treatment, or left as controls. We tested for genetic...
متن کاملLife-history consequences of vegetative damage in scarlet gilia, a monocarpic plant
Although herbivory can occur throughout a plant’s life, little is known about relative fitness impacts of damage at different life stages. In the long-lived monocarpic wildflower, Ipomopsis aggregata (scarlet gilia), for example, the response to browsing by ungulates in the year of flowering has been studied extensively, whereas damage and its fitness consequences during the preceding years of ...
متن کاملSelf-sterility in Ipomopsis aggregata (Polemoniaceae) is due to prezygotic ovule degeneration.
Based on previous studies, extreme (>99%) self-sterility in scarlet gilia (Ipomopsis aggregata) appears to be involved in late-acting ovarian self-incompatibility (OSI). Here, we confirm this suggestion by comparing structural events that follow from cross- vs. self-pollinations of I. aggregata. Growth of cross- and self-pollen tubes in the style at 11 h and growth in the ovary at 24 h was equi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 25 23 شماره
صفحات -
تاریخ انتشار 2016